Microbiological justification of the use of xenotransplants saturated with silver nanocrystals for the treatment of burn wounds
Keywords:
burns, xenograft, silver nanocrystals, antimicrobial properties.Abstract
One of the main factors determining the prognosis of burn disease is microbial contamination of the wound. A colonization of the wound surface by microorganisms slows down its healing, leads to their deepening, and is also a source of generalization of the infection. It has been proven that the use of silver preparations increases the healing of wounds, in particular burns, due to the reduction of inflammatory processes in the wound, the prevention of its infection. These data formed the basis for a new therapeutic way of wound treatment in clinical practice. The aim of the study. To study the antimicrobial efficacy of xenografts satureted by silver nanocrystals, which may be applied in the treatment of burned wounds. Materials and methods. The antimicrobial efficacy of xenografts saturated with silver nanocrystals was investigated in vitro by diffusion into agar, in a liquid nutrient medium and by studying the adhesive activity using test cultures: Staphylococcus aureus АТСС 6538, Escherichia coli АТСС 25922, Pseudomonas aeruginosa АТСС 9027 та Candida albicans АТСС 885-653. Results. The antimicrobial properties of silver, which was saturated the pieces of cryolyophilized xenoskin, were not inferior to the effectiveness of modern dressings, which were used as a positive control (wound dressing applications Mepilex Transfer Ag and Atrauman Ag) in studies. Nanosilver had reduced the adhesive potential of microorganisms, which is important to prevent contamination of burn wounds. Conclusions. Thus, the possibility of using xenografts saturated with silver nanocrystals it is considered for local treatment of burns in order to prevent purulent-inflammatory complications that may occur.
References
Alekseyev A.A., Krutikov M.G., Bobrovnikov A.E. Sepsis u obozhzhennykh: voprosy diagnostiki profilaktiki i lecheniya // Inf. i antimikrob. ter. 2001. № 3. S. 74-76. [In Russian].
Monafo WW. Supportive therapy in burn care. An overview of infection control. J Trauma. 1979;19:879– 880. [PubMed] [Google Scholar]. 3. Chernyakova H. M. Zastosuvannya sorbtsiynykh tekhnolohiy dlya likuvannya infikovanykh opikovykh ran v eksperymenti / Zaporozhskyy medytsynskyy zhurnal. 2017. T. 19. № 6(105). S. 793–797. [In Ukrainian].
Atoyebi OA, Sowemimo GO, Odugbemi T. Bacterial flora of burn wounds in Lagos, Nigeria: a prospective study. Burns. 1992;18:448–451. [PubMed] [Google Scholar].
Pandit DV, Gore MA, Saileshwar N, Deodhar LP. Laboratory data from the surveillance of a burns ward for the detection of hospital infection. Burns. 1993;19:52–55. [PubMed] [Google Scholar].
Bowler, P. G., Duerden, B. I., & Armstrong, D. G. (2001) Wound microbiology and associated approaches to wound management. Clinical Microbiology Reviews, 14(2), 244–269. DOI: 10.1128/CMR.14.2.244-269.2001
Current development of silver nanoparticle preparation, investigation, and application in the field of medicine / M. Murphy et al. Journal of Nanomaterials. 2015. Vol. 2015. P. 5.
Chakravarthi V. P., Balaji S. N. Applications of Nanotechnology in Veterinary Medicine. Veterinary World. 2010. Vol. 3, № 10. P. 477–480. 457
Eid KA, Azzazy HM. Sustained broad-spectrum antibacterial effects of nanoliposomes loaded with silver nanoparticles. Nanomedicine (Lond). 2014;9(9):1301-1310. doi:10.2217/nnm.13.89.
Lara et al.: Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of Nanobiotechnology 2011 9:30 doi:10.1186/1477-3155-9-30.
Chen X., Schluesener J. Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 2008. Vol. 176, № 1. P. 1–12.
Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH: Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3:95-101.
Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo / D. P. Gnanadhas et al. Antimicrobial agents and chemotherapy. 2013. № 57(10). Р. 4945–4955.
Ramalingam B, Parandhaman T, Das SK. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces. 2016 Feb;8(7):4963-76. doi: 10.1021/acsami.6b00161. Epub 2016 Feb 12. PMID: 26829373.
Chung YC, Chen IH, Chen CJ: The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake. Biomaterials 2008, 29:1807-1816.
Bhabra, G. Nanoparticles can cause DNA damage across a cellular barrier / G. Bhabra, A. Sood, B. Fisher, L. Cartwright, M. Saunders et al. // Nature Nanotechnology. – 2009. – № 4. – Р. 876-883.
Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds / H. H. Lara, E. N. Garza- Treviño, L. [et al.] // J. Nanobiotechnology. – 2011. – V. 9. – 30 [Electronic resource]. – Regimen of access; http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199605/ doi:10.1186/1477-3155-9-30
Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C: Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology 2010, 26:615-621.
Ravishankar Rai V, Jamuna Bai A. Nanoparticles and their potential application as antimicrobials. FORMATEX. 2011. Р. 197-209.
Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB: Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010. 85:1115-1122.
Revina A. A., Baranova Ye. K., Mulyukin A. L., & Sorokin V. V. (2005). Nekotoryye osobennosti vozdeystviya klasternogo serebra na drozhzhevyye kletki Candida utilis. Issledovano v Rossii, 8, 1403-1409. [In Russian]. https://cyberleninka.ru/article/n/nekotorye-osobennosti-vozdeystviya-klasternogo-serebra-nadrozhzhevye- kletki-candida-utilis
Andreychyn M. A. Tayemnycha khvoroba Morheloniv / M. A. Andreychyn, V. V. Bihunyak, V. V. Demʺyanenko // Klinichna imunolohiya. Alerholohiya. Infektolohiya. – 2010. – № 5–6. – S. 5–10. [In Ukrainian].
Vazhnycha O. M., Bobrova N. O., Hancho O. V., Lobanʹ H. A. Nanochastynky sribla: antybakterialʹni ta antyfunhalʹni vlastyvosti Farmakolohiya ta likarsʹka toksykolohiya №2(38)/2014. [In Ukrainian]. http://ru.ift.org.ua/node/224
Chekman I.S., Movchan B.A., Zagorodnyy M.I., Gaponov Yu.V., Kurapov Yu.A., Krushinskaya L.A., Kardash M.V. Nanoserebro: tekhnologii polucheniya, farmakologicheskiye svoystva, pokazaniya k primeneniyu. Preparati i tekhnologíí̈ . 2008. № 5 (51). https://www.health-medix.com/articles/misteztvo/2008-06-15/32-34.pdf
M.A. Ansari, H.M. Khan, A.A. Khan, et al. Evaluation of antibacterial activity of silver nanoparticles against MSSA and MRSA on isolates from skin infections. Biol & Med, 3 (2) (2011), pp. 141-146
Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK: Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2007, 2:129-136.
Bishara S. Atiyeh, Michel Costagliola, Shady N. Hayek, Saad A. Dibo, Effect of silver on burn wound infection control and healing: Review of the literature, Burns, Volume 33, Issue 2, 2007, Pages 139-148, https://doi.org/10.1016/j.burns.2006.06.010.
Chinnasamy, G., Chandrasekharan, S., Koh, T. W., & Bhatnagar, S. (2021). Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles From Azadirachta indica. Frontiers in microbiology, 12, 611560. https://doi.org/10.3389/fmicb.2021.611560 29. Thirumurugan Gunasekaran, Tadele Nigusse, Magharla Dasaratha Dhanaraju. 2011. Silver Nanoparticles as Real Topical Bullets for Wound Healing. Journal of the American College of Clinical Wound Specialists, Volume 3, Issue 4. 82-96. https://doi.org/10.1016/j.jcws.2012.05.001.
Derzhavna farmakopeya Ukrayiny / Derzh. sluzhba Ukrayiny z likar. zasobiv, Ukr. nauk. farm. tsentr yakosti likar. zasobiv. – 1-e vyd. – Kharkiv, 2011 – Dopov. 4: vved. v diyu z 1 trav. 2011 r. Nakazom MOZ Ukrayiny vid 23 berez. 2011 r. № 162. – 538 s.
Brilis VI, Brilene TA, Lentsner HP, Lentsner AA. Metodika izucheniya adgezivnogo protsessa mikroorganizmov [Method of studying the adhesive process of microorganisms. Laboratornoe delo. 1986; 4:210-2. (Russian).
Mikrobiologiya i immunologiya dlya stomatologov / R. Dzh. Lamont, M. S. Lantts, G. A. Berne, D. Dzh. LeBlank / [pod red. V. K. Leont’yeva]; per. s angl. Smirnova I. V. – M.: Prakticheskaya meditsina, 2010. 504 s.
I. Sondi, B. Salopek-Sondi Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sc. 2004. V. 275. № 1. P. 177–182.
G. Gahlawat et al. Microbial glycolipoprotein–capped silver nanoparticles as emerging antibacterial agents. Microb Cell Fact. 2016. Vol. 15. P. 1-14.